Arabidopsis cortical microtubules are initiated along, as well as branching from, existing microtubules.
نویسندگان
چکیده
The principles by which cortical microtubules self-organize into a global template hold important implications for cell wall patterning. Microtubules move along bundles of microtubules, and neighboring bundles tend to form mobile domains that flow in a common direction. The bundles themselves move slowly and for longer than the individual microtubules, with domains describing slow rotary patterns. Despite this tendency for colinearity, microtubules have been seen to branch off extant microtubules at approximately 45 degrees . To examine this paradoxical behavior, we investigated whether some microtubules may be born on and grow along extant microtubule(s). The plus-end markers Arabidopsis thaliana end binding protein 1a, AtEB1a-GFP, and Arabidopsis SPIRAL1, SPR1-GFP, allowed microtubules of known polarity to be distinguished from underlying microtubules. This showed that the majority of microtubules do branch but in a direction heavily biased toward the plus end of the mother microtubule: few grow backward, consistent with the common polarity of domains. However, we also found that a significant proportion of emergent comets do follow the axes of extant microtubules, both at sites of apparent microtubule nucleation and at cross-over points. These phenomena help explain the persistence of bundles and counterbalance the tendency to branch.
منابع مشابه
Arabidopsis Cortical Microtubules Are Initiated along, as Well as Branching from, Existing Microtubules W
The principles by which cortical microtubules self-organize into a global template hold important implications for cell wall patterning. Microtubules move along bundles of microtubules, and neighboring bundles tend to form mobile domains that flow in a common direction. The bundles themselves move slowly and for longer than the individual microtubules, with domains describing slow rotary patter...
متن کاملGCP-WD Mediates γ-TuRC Recruitment and the Geometry of Microtubule Nucleation in Interphase Arrays of Arabidopsis
Many differentiated animal cells, and all higher plant cells, build interphase microtubule arrays of specific architectures without benefit of a central organizer, such as a centrosome, to control the location and geometry of microtubule nucleation. These acentrosomal arrays support essential cell functions such as morphogenesis, but the mechanisms by which the new microtubules are positioned a...
متن کاملOn the origin of cortical microtubules.
Epidermal hypocotyl cells are characterized by a highly structured cortical microtubule array, consisting of bundles of polarized, parallel microtubules that gradually migrate across the cortex in a rotary fashion (Chan et al., 2007). In animal cells, microtubules arise from centrosomes; however, plant cells lack centrosomes, and microtubules are thought to self-organize into structured arrays ...
متن کاملInfluence of taxol and CNTs on the stability analysis of protein microtubules
Microtubules are used as targets for anticancer drugs due to their crucial role in the process of mitosis. Recent studies show that carbon nanotubes (CNTs) can be classified as microtubule-stabilizing agents as they interact with protein microtubules (MTs), leading to interference in the mitosis process. CNTs hold a substantial promising application in cancer therapy in conjunction with other c...
متن کاملMicrotubules contribute to tubule elongation and anchoring of endoplasmic reticulum, resulting in high network complexity in Arabidopsis.
The endoplasmic reticulum (ER) is a network of tubules and sheet-like structures in eukaryotic cells. Some ER tubules dynamically change their morphology, and others form stable structures. In plants, it has been thought that the ER tubule extension is driven by the actin-myosin machinery. Here, we show that microtubules also contribute to the ER tubule extension with an almost 20-fold slower r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 21 8 شماره
صفحات -
تاریخ انتشار 2009